GSR: Editing - OncoSimulR Simulator

You may request changes to this simulator by navigating to the Basic, Details, and Citations/Applications tabs. When you are finished, open the Submit tab. To return back to the simulator view, click OncoSimulR. Finally, please take note of the GSR simulator privacy policy.
OncoSimulR
BioConductor package for Forward Genetic Simulation of Cancer Progresion with Epistasis
An R/BioConductor package that provides functions for forward population genetic simulation in asexual populations, with special focus on cancer progression. Fitness can be an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, order restrictions in mutation accumulation, and order effects. Mutation rates can differ between genes, and we can include mutator/antimutator genes (to model mutator phenotypes). Simulations use continuous-time models and can include driver and passenger genes and modules. Also included are functions for simulating random DAGs of the type found in Oncogenetic Trees, Conjunctive Bayesian Networks, and other cancer progression models; plotting and sampling from single or multiple realizations of the simulations, including single-cell sampling; plotting the parent-child relationships of the clones; generating random fitness landscapes (Rough Mount Fuji, House of Cards, and additive models) and plotting them.
cancer, mutation, simulation, evolution, mutator, epistasis, fitness landscape, cancer progression models
2.13.1
06-18-2015
02-07-2019
https://github.com/rdiaz02/OncoSimul
rdiaz02@gmail.com

Attribute Tree Control

Step 1: Use the attribute tree to add new attributes or remove pre-selected attributes to describe the simulator.

Every sub-attribute is selected
Not all sub-attributes are selected
  • Target
    • Type of Simulated Data
      • Genotype at Genetic Markers
      • Diploid DNA Sequence
      • Haploid DNA Sequence
      • RNA
      • Gene Expression
      • Sex Chromosomes
      • Mitochondrial DNA
      • Protein Sequence
      • Sequencing Reads
      • Phenotype
      • Single-Cell Sequencing
      • Bulk Sequencing
      • Proteomics
      • Chromatin Conformation
    • Variations
      • Biallelic Marker
      • Multiallelic Marker
      • Single Nucleotide Variation
      • Amino acid variation
      • Microsatellite
      • Insertion and Deletion
      • CNV
      • Inversion and Rearrangement
      • Alternative Splicing
      • Missing Genotypes
      • Genotype or Sequencing Error
      • Ionization
      • Other
  • Simulation Method
    • Standard Coalescent
    • Exact Coalescent
    • Machine Learning
    • Forward-time
    • Resample Existing Data
    • Phylogenetic
    • Gene dropping
    • Neural network
    • Other
  • Input
    • Data Type
      • Allele Frequencies
      • Empirical
      • Ancestral Sequence
      • Saved simulation
      • Reference genome
      • Other
    • File format
      • Arlequin
      • CREATE
      • Fstat
      • GDA
      • Genepop
      • MIGRATE
      • MS
      • SAM or BAM
      • NEXUS
      • Phylip
      • STRUCTURE
      • XML
      • Tree Sequence
      • Program Specific
      • Other
  • Output
    • Data Type
      • Genotype or Sequence
      • Phenotypic Trait
      • Individual Relationship
      • Phylogenetic Tree
      • Demographic
      • Mutation
      • Methylation
      • Gene Expression
      • Protein Expression
      • Linkage Disequilibrium
      • Diversity Measures
      • Fitness
      • Sequencing Reads
        • Illumina
        • Roche 454
        • SOLiD
        • IonTorrent
        • PacBio
        • Nanopore
        • Other
      • Other
    • File Format
      • Arlequin
      • Fasta or Fastq
      • Fstat
      • Genepop
      • Linkage
      • MIGRATE
      • MS
      • PED
      • Phylip
      • NEXUS
      • STRUCTURE
      • VCF
      • SAM or BAM
      • Tree Sequence
      • Program Specific
      • Other
    • Sample Type
      • Random or Independent
      • Sibpairs, Trios and Nuclear Families
      • Extended or Complete Pedigrees
      • Case-control
      • Longitudinal
      • Other
  • Phenotype
    • Trait Type
      • Binary or Qualitative
      • Quantitative
      • Multiple
    • Determinants
      • Single Genetic Marker
      • Multiple Genetic Markers
      • Sex-linked
      • Gene-Gene Interaction
      • Environmental Factors
      • Gene-Environment Interaction
  • Evolutionary Features
    • Demographic
      • Population Size Changes
        • Constant Size
        • Exponential Growth or Decline
        • Logistic Growth
        • Bottleneck
        • Carrying Capacity
        • User Defined
      • Gene Flow
        • Stepping Stone Models
        • Island Models
        • Continent-Island Models
        • Sex or Age-Specific Migration Rates
        • Influenced by Environmental Factors
        • Admixed Population
        • User-defined Matrix
        • Other
      • Spatiality
        • Discrete Models
        • Continuous Models
        • Landscape Factors
    • Life Cycle
      • Discrete Generation Model
      • Age structured
      • Overlapping Generation
      • User-Defined transition matrices
    • Mating System
      • Random Mating
      • Monogamous
      • Polygamous
      • Haplodiploid
      • Selfing
      • Age- or Stage-Specific
      • Assortative or Disassortative
      • Other
    • Fecundity
      • Constant Number
      • Randomly Distributed
      • Individually Determined
      • Influenced by Environment
      • Other
    • Natural Selection
      • Determinant
        • Single-locus
        • Multi-locus
        • Codon-based
        • Fitness of Offspring
        • Phenotypic Trait
        • Environmental Factors
      • Models
        • Directional Selection
        • Balancing Selection
        • Multi-locus models
        • Epistasis
        • Random Fitness Effects
        • Disruptive
        • Phenotype Threshold
        • Frequency-Dependent
        • Other
    • Recombination
      • Uniform
      • Varying Recombination Rates
      • Gene Conversion Allowed
    • Mutation Models
      • Two-allele Mutation Model
      • Markov DNA Evolution Models
      • k-Allele Model
      • Infinite-allele Model
      • Infinite-sites Model
      • Stepwise Mutation Model
      • Codon and Amino Acid Models
      • Indels and Others
      • Heterogeneity among Sites
      • Others
    • Events Allowed
      • Population Merge and Split
      • Varying Demographic Features
      • Population Events
      • Varying Genetic Features
      • Change of Mating Systems
      • Other
    • Other
      • Phenogenetic
      • Polygenic background
  • Interface
    • Command-line
    • Graphical User Interface
    • Integrated Development Environment
    • Script-based
    • Web-based
  • Development
    • Tested Platforms
      • Windows
      • Mac OS X
      • Linux and Unix
      • Solaris
      • Others
    • Language
      • C or C++
      • Java
      • R
      • Python
      • Perl
      • Visual Basic
      • Other
    • License
      • GNU Public License
      • BSD
      • Creative Commons
      • MIT
      • Other
  • GSR Certification
    • Accessibility
    • Documentation
    • Application
    • Support

Summary of Proposed Changes

Step 2: Review list of proposed attribute addition(s) and subtraction(s).

To Add

    To Remove

      Can't Find the Attribute You Are Looking For?

      If you would like to propose an attribute that you cannot find in the tree above, or if you would like to add a clarification to one or more attributes for this simulator (e.g. a specific file format for attribute /Output/File Format/Other), please list them in the Additional Comment box of the Submit tab.

      You may add citations by pmid, add citations by direct entry, remove citations (using the recycling bin icon), and edit citations (using the rarely seen edit icon) that were originally entered by direct entry.

      Summary of Proposed Changes

      To Add

      To Remove

      Current Citations/Applications

      Schoen D, Schultz S, Somatic mutation and evolution in plants, Annual Review of Ecology, Evolution, and Systematics, vol. 50, in press, , , Application
      Diaz-Uriarte R, Vasallo C, Every which way? On predicting tumor evolution using cancer progression models, bioRxiv, , https://doi.org/10.1101/371039,, Application
      [Pubmed ID: 28186227], Diaz-Uriarte R, OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations., Bioinformatics, 06-15-2017, https://www.ncbi.nlm.nih.gov/pubmed/?term=28186227,Primary Citation
      [Pubmed ID: 29048486], Diaz-Uriarte R, Cancer progression models and fitness landscapes: a many-to-many relationship., Bioinformatics, 03-01-2018, https://www.ncbi.nlm.nih.gov/pubmed/?term=29048486,, Application
      This email will never be published. This email is used only for verification and communication purposes.
      Please inform the GSR team here if you would like to see an attribute added to the attribute tree (or any other changes to the simulator description system as it exists).