Recently certified
Basic Package Attributes
Title Easypop
Short Description EASYPOP is an individual based model intended to simulate datasets under a very broad range of conditions
Long Description EASYPOP can simulate haploid, diploid or haplodiploid data. For diploids there is the choice between hermaphrodites or sexuals. For hermaphrodites, the proportion of clonal reproduction and selfing can be chosen, whereas for sexuals, complex breeding structures can be simulated (e.g. monogamy with a given proportion of extra-pair matings). The number of individuals can be selected for each population and dispersal is sex-specific. There are various migration models such as two-dimensional stepping stone or hierarchical island model. In addition there is an isolation-by-distance option which works with the coordinates of the populations on any number of dimensions. There are also several mutation models implemented, which are particularly oriented on the simulation of microsatellite loci. Genotypes are real multilocus, (i.e. there are not independent replicates for each locus). All mutation parameters can be set individually for each locus. EASYPOP is able to handle very large simulations on standard personal computers and is limited only by the memory of the machine. The computer code has been optimized for maximum speed. This allows running very large simulations on personal computers in a reasonable amount of time. In order to fit to analytical xpectations in particular for variances, the functions implemented in EASYPOP are probabilistic and not deterministic. In other words, the simulations rely on the genertation of random numbers.
Version 2.0.1
Project Started 2000
Last Release 14 years, 3 months ago
Citations Balloux F, EASYPOP (version 1.7): a computer program for population genetics simulations., J Hered, May 1, 2001 [Abstract, cited in PMC ]
GSR CertificationAccessibility
Last evaluatedJuly 12, 2018 (784 days ago)
Author verificationThe basic description provided was derived from a website or publications by the GSR team and has not yet been verified by the simulation author. To modify this entry or add more information, propose changes to this simulator.
Propose changes to this simulator